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It is well known that the Larmour rotation of charged particles In a strong 
magnetic field leads to anlsotropy of transport phenomena In an ionized gas. 
For this, the methods of the mechanics of continuous media do not give lnfor- 
mation about the viscous stress tensor and the heat flux vector In the prin- 
ciples of conservation of momentum and energy [l]. That Information can be 
obtained by the methods of statistical mechanics; thus, In the last few 
years, there have appeared a number of papers which use the kinetic theory 
of gases to Investigate transport phenomena in a plasma. Using various 
assumptions, references [2 to 81 obtain systems of equations describing the 
behavior of a fully Ionized plasma in a magnetic field, either In the two- 
fluid approximation, In which the plasma is represented by Interpenetrating 
Ion and electron gases, or In the one-fluid model in which the mixture is 
treated as a whole. Paper [g] Is devoted to the Influence of neutral parti- 
cles, having a Maxwellian distribution, 
form magnetic field. 

on the transport proceszes In a uni- 
Finally, in [lo and 111 In the "lx-moment approxima- 

tion in Grad's method, a closed system of equations for transport In a mag- 
netic field Is found, separately for each of the electron, Ion, and neutral 
gases making up the partially Ionized plasma. 

In what follows, a closed system of equations Js constructed to describe 
the behavior of such a plasma as a whole. 

From this system, the well-known equations of Isotropic magnetohydrodyna- 
mlcs, as well as the one-fluid equations of dynamics of a fully-ionized gas, 
arise as particular cases. Also, the results obtained make It possible to 
investigate other limiting cases, for example, the flow of a weakly ionized 
gas. 

As In [lo], the following assumptions are made: 

1) A monatomic gas is considered. 

2) The Interaction between particles (including Coulomb interaction) is 
described In terms of pair collisions. 

3) Phenomena connected with nonelastic collisions are not taken into 
account. 

4) The macroscopic parameters of the gas change hardly over distances of 
the order of the mean free path, and over a time interval of the order of 
the time between collisions. 

5) Te= T = r.= T ; here, Ta is a temperature, in ex a indicates the 
component (electron, Ion or neutral particle). 
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-.__ _ 
6) It Is assumed that v/n, J II+ <I, where 1j11 Is %he mass of the 

a-particle. 

7) The gas Is assumed to be electrically quasi-neutral, i.e. n. e, + n, e, + 
+ r~. e,r 0, where no and 
the charge of the a-compon%. 

are, respectively, the partial number density dnd 

Putting e,=-Ze,- Ze , we have the condition fo- the concentl,atlon, 
11.2 Zn, . 

The possibility of the existence of a ‘small volume charge Is included In 
Maxwell’s equations by dlv D - p 
charge, 2 is the charge number, b 

, where P,= e(Zn,- n,) Is the volume 
Is the electric Induction vector. 

1, Vlroour rtrrrr tmror. It Is well known [12] that, for an isot] epic 

medium, in the absence of a magnetic field, the viscous stress tensor nr. 

Is simply related to the rate of strain tensor 

Here u is the mean mass velocity of the gas, brS is the Kronckcr oym- 

bol, and the scalar coefficient q Is called the viscosity coefficient. For 

an anisotropic medium, this relation becomes more general, remaining linear 

since departures from equilibrium are considered small. 

The symmetric tensor er’ , with t:,ace equal to zel.0, has flvc linearly 

Independent components, therefore, the general form of the linear homogeneous 

relation between nr. and er. contains five Independent coefficients of 

proportlonallty. It 1s natural to call them the coefficients of viscosity 

of such an anisotropic medium. 

Following Braglnskll [2], we Introduce the tensors 

W,‘” = 313 (b”,“’ _ 1/3 ,““) (b”b’ _ l/3 @“) &‘” (b= B/B) 

W,‘” = (yyjl”‘” + ‘In d~““bpb’) epLy (yvl = *ml _ &?n) 

W,‘“’ -= (6L’pb”b” f- 6,“‘b’bl”) ? (1.2) 
J.q”l = l/z (6pEmyv + 61mve’V) bY ek” 

Wl”’ = (brb!*E”‘YY + b”‘bveryP) bYeP” 

Here B Is the magnetic Induction vector and cp.Y is the permutation 

tensor. In addition, 

W,‘” + Wy + Wz1”Jl = er”‘, Wkr”‘W,;m = () 
for k#u (1.3) 

Then, solving Equations (2.1) and (2.6) of [lo], and summing over all 

components, we will have, for the viscous stress tensor In an arbitrary 

Cartesian coordinate system, the expression 

x 
ml 

= - $0) p&y _ pw,‘” _ q(2)j,fJ~ + q(3q,.j73rm + q(4Q,p74rm (, -4) 

The five coefficients of viscosity can be expressed In terms of the par- 

tial coefficients of viscosity of the electrons, Ions, and neutral particles 

'1 (k’) = It qa(k) (k = 0, 1, 2, 3, 4) 
a=.?, i, a (I.51 
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The latter have the following form: 

1) Coefficients of viscosity of electrons 

2) Coefficients of vlsccslty of Ions 

q-p) ((&) = r)i(4) pa ) = v3 vie’lP 

’ ’ (1.7) 

1 + ‘“/8 oi%p 

3) Coefficients of viscosity of neutral particles 

(1.8) 

-1 -1 
0-l = 1 - U’Z,ZiZia T,i, qa = ‘I3 n,kTz, (a = e, i, a) 

Here, k Is Boltzmann’s constant, and the other notation Is the same as 

In [lo]. (*) 

We shall represent the viscous stress tensor by means of one-fluid para- 

meters. We shall express the particle number densities n, appearing In 

rla3 Tc a and 7ap by the mass density of the gas p and Its degree of 

ionlzatlon s . 
p = x nanh, 

‘li 
SC- 

a 
ni .‘- li(‘ 

Using the condition n ==Z n,, for the number density of the mixture, 

we have 
0. 

ZS 
n, = Zni = - n, 

l-s 
na =ifsn, 

1 +zs 
P 

1 f zs 
1 + zs n = Zsrtr, + ‘tli = - tni P (1.9) 

Thus, we find 

n, = Zni = $p, (1.10) 
1 

accurate up to terms of order m,/mi . 

It Is not difficult to see that there are three characteristic directions 

of momentum transport along which the gas viscosity Is different. The first 

transport, along the magnetic field, of the component of momentum In the 

*) In [ 10) ther,e IS an error in, the expressions for %a_1 and (?l*)-l . In 
the Items 0.4 r,;l the factor _A,, 1s missing. 



direction of the field. It Is characterized by the coefficient q(c) (T, S, p), 

which Is equal to the viscosity of the partially Ionized gas in the absence 

of a magnetic field. In the other two directions, characterized by the 

coefficients q(*) (T, S, p, B) = q(z) (T, s, p, 2B) and ‘Tlf3) (T, S, p, B) = 

= r)(l) (T, S, f3, 2R), the viscosity of the partially ionized plasma is strongly 

reduced In the presence of the field. 

Let us now examine the viscous stress tensor for the particular cases of 

a weakly ionized and fully ionized gas. Putting s - 0 In (1.5), we find, 

after simple calculations, 

‘1 (k) &I s=o + 0 (9 for k = 0, 1, 2 5kT = 

0 (4 for k = 3, 4 lqal s=o = 8Q,; (9 (1.11) 

This coincides with the coefficient of viscosity of a simple gas according 

to Chapman-Cowling [ 123. From this it follows that, for a weakly ionized 

gas, within the assumptions that have been made, the hydrodynamic viscous 

stress tensor can be used. 

Before proceeding to the case of fully Ionized gas, we note that, for 

arbitrary s, W, 7. and UJ, 7i e , the contribution of the electrons may be 

omitted from the viscous strain tensor with accuracy up to quantities of 

order Jm’;7;;;, . This follows from an estimate of the ratios r],tk) / ‘Q(“) 

(k = 0, 1; 2, 3, 4). Thus, instead of (1.5), it is sufficient to take 

(k = 0, 1,2,3,4) (1.12) 

From this 11 (k) = ~6) for s = 1 (see [2 and 71). Then, putting s = 1 

In (1.7) and writing (1.4) In the special coordinate system with z-axis 

parallel to b , we obtain expressions which coincide with those given in 

[7 and 81 (up to numerical factors of the coefficients). The difference is 

due to different methods of solution of Boltzmann’s equation [2 and lo], in 

particular, Grad’s “13-moment” approximation in the second reference, and, 

in the first reference, development of the correction to Maxwell’s function 

In a series of Sonin polynomials, taken up to two terms. 

2. neat flux vcictor. As may be seen from Equations (1.13), (3.3) and 

(3.8) of [lo], in order to write down the heat flux vector of a partially 

ionized gas in the one-fluid approximation, it Is necessary to have expres- 

sions for the diffusion velocities w which make up its components. using 

condition &?,n,tva = 0 and the expr.tssion for the conduction flux 

j = ~n,e,w, = - r&t! (tve - vi), we have with accuracy to terms of order pn, / nl.; 

mi 
M’ - e- - -j t (1 - s) Vi, Zesp 

~~i=-+j+(l_s)Vi 

\va = - zj - svi (2.1) 
The ion “slip” velocity Vi = w, -w, is given by Expression (4.8) In [lo], 

which we rewrite, using the one-fluid parameters and taking onto account the 
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viscous term, 

vi = ~~~ [j + (1 - s) we-c,, (j x WI - 

2% 
(2.2) 

[ 
Z-!-l 

-sp ~+~s)ls+ 
zs (1 - s) 

l+zs vp--divx+divni - 
3 

1 + zs -- 
P [ 

Here p is the pressure, ha is the heat flux vector corresponding to 
the a-component [lo] . 

Then, neglecting the Influence of viscosity on the heat flux, using the 

assumptions that have already been made, and taking into account the obser- 

vations made In [lo] concerning the terms In (2.2), we can obtain from (1.13), 

(3.4) and (3.5) of paper [lo] the following general expression for the heat 
flux vector: 

q = - h*vT - A*” b (VT. b) - hT-L (VT x b) - 

- (P + hgP) vp - hP ” b (VP. b) - APL (VP x b) - 

- (ha + hg8) IJS - h”‘b (yy-s.b) - ??- (vsx b)- 

- (hj + A:) j - J,"'b (j.b) - (A" + hi') (j x b) (2.3) 

The relative heat flow h is characterized by the coefficients of heat 

conductivity 

h=q--+ 2 n,kTw, 
a=e, i, a (2.4) 

Ah’ (T, S, p, B) = 2 AZ (k = T, T,, , T,; p, p”, pL; s, sII, SI; it i”, il) 
a=e. i, II 

Here, the partial coefficients of heat conductivity of the electrons, ions 

and neutral particles have the following form: 

1) Coefficients of heat conductivity of electrons 

;h,= = h, / [1 + (W&*)2], A,* ” = (O&*)2 he*, heT1- = - We*LT 

her = _ &he*, he’ ” = - behe* ” , ?$- = - be&*‘, A,S = - c,h; 

1 * II 
e = - c,A, T II ) Q- = - ceheTL, Ad = - [de - (OeTe*)s de’] A,’ (2.5) 

h jtl cl = - (de -+- de’) heT ” ) A$ = - (d, $ d,‘) heTL 

where 
b _ *iCea(l -‘I 

k(l +Zs)p e’ 

5,, (Z + 1) T 
e ce = z (1 + Zs) s e 

d, = d,’ = G l--s &_s 
zt?* 

(2.6) 
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2) CoeSSlclente of heat conductivity of ions 

Lip = -p, 
bi TII 

lip” = ai Ai ) hip1 = 4 hiTI, 
* 

ha = 2 hiT 

(2.7) 

h ? 11 T_L 
% = ;_ AiT 11, hp- = $ hi , )‘i’ = - [Cl* - (WiZi*@)2 d{] 2 

z % 

h.iii t = - (di + di‘) $ , ) !J- ‘1 = - ((& + &‘) 9 
1 5 

where 

&=I+$, bi = (ai - f) ~~k;ll>:~i p 

c.= (& _f) L(Z+i)T 
2 (1 - S) (1 + 2s) ’ 

di = (Q - $) 
mpi La 

2ek (1 - s) pr, (2.8) 

4 = (G - f) ,~~~!f~~ > 6-1 = 1 
$*ti*Ta* 

c- 
?aiTia 

3) CoeSSlclents of heat conductivity of neutral particles 

haT = 
a,% 

1 + (oi’i*6)” + L 
haT ” = (OiZi*.6)2 (AaT - ha) 

haTL = @iTi+@ (AaT - ha) 

h 81 a ca haTI, z- 
=a 

h,’ = - [da - ( oiZi*6)2 d,’ ] ‘e - a, _ s:k *r _1 
i ai 

T II 
a ’ ” 2 _ (d, + d,‘) h, , 

x T-L qtiVt&,da 

a aa 
hji= - (d,+d,‘)+- a a, - s-I&*~~~~ 

Here 

6-I aazT+F, b = 
( 

z Psi* 

(It 
‘a--,G 

1 
2k;fiF;;jp 

( 

PrTi* 

) 

ti,P+UT 
ccc=== a,-- 

maj 2(1 - 4 (1 + W 
(2.10) 
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The remaining notation in (2.51, (2.7) and (2.9) is the same as in [lo]; 

in the expressions 

h, = .Vs liv?,-inllkT~~* u za* (a = e, i, 0) 

na should be replaced by p , using Equation (1.10). 

The coefficients of heat conductivity hgk (k = p, s, i,ji), which charac- 

terize the difference Q - h = "/SE n,kTw,. have the form 

where 

Putting B =. 0 in (2.5), we obtain, for 8 partially Ionized gas, 

g = - hTVT - (h” -k hz)Vp - (11” + A,“) Vs - (?L' +.A:) j (2.f3) 

where, in addition to the ordinary heat conduction in the dire&Ion of VT 

(nonionized gas), there appear diffusive heat flows in the directions Vp, 0s 
and j ; the term (hj <- &j) j corresponds to the Thomson effect. Comparing 

(2.3) and (2.13), we see that application of a magnetic field to a Partially 

ionized gas leads to the appearance of additional heat fluxes in directions 

parallel and transverse to the magnetic field, with the terms AT (VT><b) 

and (h'l f ?&-) (j:: b) corresponding to the Righi-Leduc and JBtinghausen 

effects. Making use of the formula k == b (k-b) + bx(kxb), where 

k =- VT, Vp, Vs, j, we distinguish three characteristic, mutually perpendl- 

cular directions of heat transfer, in which the coefficients of heat conduc- 

tivity are different. Since the magnetic field does not affect the mean 

free path of particles along the field, then the coefficient of heat conduc- 

tivity In that direction is the same as without field 

A" -/- h"':I = h': IB=C (li = I‘, p, s, j) 

On the other hand, the diSt8nCeS traversed without Collision by charged 

particles in a plasma in the transverse direction of the magnetic field, are * 
decreased, and therefore so are the Coefficients Xk and X*1, characteriz- 

ing these directions. It is easy to verify that in the isotropic case, when 

ONTO* < 1 and OiZi*6 < 1 (i.e. mean free path is equal In all directions), 

the heat flux vector reduces to the form (2.13). 

It should be noted that In the expression for the Coefficients Of the 

relative heat flux h , which are connected with the diffusive thermoeffect, 

the factors c.,, Cir, CsI appear. In [lo] It is shown that C,. and C,. 

8re 6 0.2 for real potentials of interaction between molecules and vanish 

for "Maxwellian" molecules. Therefore, the contribution from the correspon- 

ding terms to the heat flux is not large. A somewhat larger contribution iS 
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made by the electrons, since the 
j&,‘-‘- . 

We will now evaluate the role of the electrons and ions in the heat flux. 

equations of . partly ionlzod g.0 589 

factor cei -_ -0.6 occurs in Ad, &jll and 

Forming the ratio Xik ! hek (k: = T, T 11, T,; p, pii, PI; S, 311, S_L; j; ill ; il) 
and neglecting quantities of order vme/ mi,we can show that, unlike the 

viscous stress tensor, the heat flux vector in the general case is determined 

by both the ions and electrons. However, their relative importance is deter- 

mined by the strength of the magnetic field and the direction of heat flux. 

Really: 

1) if O&%3* -< 0 (1) 

hi 

I 

<I for ‘=T, ‘II: TI; PII+ Pl;‘Sli* ‘I; it ill, il 

F- O(f) for k=p, s 
(2.34) 

2) if w8z8* = 0 ((mi / m,)“) 

e 1 for 
h:- O(1) for 

‘c=TIIT ‘I; PI/; ‘,I(; ii! 

A,” i 
k = T; pL; sI; i, li (2.15) 

s-1 for k= p, s 

31 if o,T~* > ‘I md OiZi** > O (‘I) 

hi” 

(’ 

<I for k=Ti, 

O(i) for k=TIT pi/v ~11, iii 

T-\>i for k=T,p,pI,s,sL,i,il 

(2.16) 

Finally, let us consider the heat flux vector for the particular cases of 

weakly ionized and fully ionized gases. Putting 8 -@ 0 in (2.5), (2.71, 

(2.9) and (2.11), after some simple calculations we obtain 

[ P,l,=,,+o(~) for k= 7’ 

1 t 
I& Is=0 = 

75kaT 5 3k 

a” =: Q(s) for k=T,,J1_,wII,PI 32m,8,;4 (2) = 2 2m, ‘a 
) 

1 ~~~a,gIxoLkl.g=,,+Q@) for k=+yp,_s iq i,,, iL (2.17) 

This coincides with the coefficient of heat conductivity of a simple gas 
according to Chapman-Cowling [12]. 

Putting 8 = 0 in (2.5), (2.7) and (2.11) and writing (2.3) in the spe- 

cial coordinate system with s-sxls parallel to the vector b , we find for 

the heat flux vector of a fully ionized gas an expression which Is the same 

(up to numerical factors) as that given in [7 and 8~. 

3. Sjretem of ~WtfOnr of urlOotrOpi0 mrgnOt0&00d;pnuniOO. The equations 

of conservation of mass, ~rnent~ and energy in the one-fluid approximation, 

within the restrictions set by our assumpi;ions, have the form 

$ + div pu = 0 (3.1) 
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p$= -VP--diva-+ jxB (-$-=$+(ucJJ) (3.2) 

3 dP z dt + G p div u = - div q - TP g+j(E+uxB) (3.3) 
111 

Here E is the electric field intensity vector; in place of TT’~ and q 

the expressions (1.4) and (2.3) should be substituted. The equation of state 

is given by kinetic theory In the form p = nkl’ . Taking into account the 

relation (1.10) between the number density n and mass density of gas, we 

have 

P= (3.4) 

Here IL. = CI~ Is the “molecular weight” of the neutral (or ion) gas, A 

is the gas constant per gram-molecule. Using (3.4), (3.1), and the specific 

heat at constant volume of the a-gas, CVcr = 3/c (klmll), as determined In [12], 

the energy equation (3.3) may be put In the form 

(I + zs) coap s + .%,PT g = 

= - p div u - divq-nrma$+ j(E-l-uxB) 

Introducing the heat energy per unit mass of the u-component of the mlx- 

ture, err = cVoT, we obtain 

(1 +Zs)p 2 + 2 psa 2 = - p div u-divq- JP~ + j (E + ux B) (3.6) m 

The local degree of ionization 8(x, y, z, t) appearing in (1.4), (2.3), 

(3.3) and (3.4) may be found from the continuity equation for the d-compo- 

nent of the partially ionized gas 

2 + div (nawa + TZ,U) = 0 

Taking Into account (l.lO), (2.1) and (3.1), we obtain 

p-&-?jos$ divps(l - s)Vi = 0 

(3.7) 

(3.8) 

Here, the ion “slip” velocity V, is given by Expression (2.2). 

To the system of equations written above, It Is necessary to add the 

equations of electrodynamics, 

rot+= j+-$$-, rotE= -$; div B = 0, div E,, E = p, (3.9) 

as well as the generalized Ohm's law, which, with an accuracy up to quanti- 

ties of order J;na;riii;- Is given by Equation (4.10) In [lo]. It is also 

necessary to take into account the influence of viscous momentum transfer 

on the diffusion of charged particles. 

Using one-fluid parameters, we have 
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ujj -t u’II b (j. b) + oil (jx b) = 

-= u, [E + u x B + oTVT + uT 11 b (VI’. b) + d-J- (VTx b) -ta”Vy -i- 

+ d’J- (Vp x b) _i- dC’s + upI. (DSX b) + on-L (s cliv n - div ni) X bl (3: 0) 

UP .= 
rni 

uPI = - GOOeZgUP, us I< 
1nip 

_---- 
e (I+ 2s) p ' e (I -1. Zs)"sp 

The other notation is the same as In [lo]. 

Thus, we have obtained a closed system of 17 equations (3.l)to (3.4),and 

(3.8) to (3.10), 'with 17 unknowns U, B, E, j, p, p, s, T and pe, to desc:,ibc 

the dynamics of a partially Ionized gas in a magnetic field. 
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