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It is well known that the Larmour rotatlion of charged partlicles in a strong
magnetic fleld leads to anisotropy of transport phenomena 1n an ionized gas.
For thls, the methods of the mechanics of continuous media do not give infor-
mation about the viscous stress tensor and the heat flux vector 1n the prin-
clples of conservation of momentum and energy [1]. That informaticn can be
obtained by the methods of statistical mechanics; thus, in the last few
years, there have appeared a number of papers which use the kinetlc theory
of gases to investigate transport phenomena in a plasma. Using varlous
assumptions, references [2 to 8] obtain systems of equatlons describing the
behavior of a fully ionized plasma in a magnetlc field, elther in the two-
fluid approximation, in which the plasma is represented by interpenetrating
ion and electron gases, or in the one-fluid model in which the mixture is
treated as a whole. Paper [9] 1s devoted to the influence of neutral partil-
cles, having a Maxwellian distribution, on the transport processes 1in a unl-
form magnetic fleld. Finally, in [10 and 11] in the "13-moment" approxima-
tion in Grad's method, & closed system of equations for transport in a mag-
netic field 1s found, separately for each of the electron, lon, and neutral
gases making up the partially ionized plasma.

In what follows, a closed system of equations 3s constructed to describe
the behavior of such a plasma as a whole,

From this system, the well-known equations of isotropic magnetohydrodyna-
mics, as well as the one-~fluid equations of dynamics of a fully-lonlzed gas,
arise as particular cases. Also, the results obtained make 1t possible to
investigate other limiting cases, for example, the flow of a weakly lonlzed
gas.

As in [10], the following assumptions are made:
1) A monatomic gas is considered.

2) The interaction between particles (including Coulomb interaction) is
described in terms of pair collisions.

3) Phenomena connected with nonelastic colllsions are not taken into
account.

4) The macroscoplc parameters of the gas change hardly over distances of
the order of the mean free path, and over a time interval of the order of
the time between colllsions.

5) T,=T,=T,=7T ; here, T is a temperature, incex o 1ndicates the
component (eiectron, ion or neutral particle).
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One-fluid dynamical equations of a partly ionized gas 583

6) It 1s assumed that J/m, /m;<€l, where m, 1s the mass of the
a-particle.

7) The gas 1is assumed to be electrically quasi-neutral, i.,e. n.,e,+ nyey+
+ n,e,~ 0, where ng and ey are,respectively, the partial number density and
the charge of the g-~component.

Putting e,=—-Ze,= Ze , we have the conditlon fo- the concentration,
nex 2n; .

The possibility of the exlstence of a small volume charge is included in
Maxwell's equations by div D = p_, where p,= e(Zn;~ n,) 1s the volume
charge, Z 1is the charge number, b is the electric induction vector.

1. Visocous stress tensor, It is well known [12] that, for an isotropic
medlum, in the absence of a magnetic fleld, the viscous stress tensor nr®
1s simply related to the rate of strain tensor

6ur Bum 2 rm 6ue
oa, T T30 G (1.1)

m

M = — nem, erm —

Here u 18 the mean mass velocity of the gas, &'* 1s the Kroncker sym-
bol, and the scalar coefficient n 1c called the viscosity coefficient. For
an anlsotropic medlum, thils relation becomes more general, remaining linear
slnce departures from equilibrium are considered small.

The symmetric tensor e, with t:ace equal to zero, has five linearly
independent components, therefore, the general form of the linear homogeneous
relation between n'® and ef* contains five independent coefficients of
proportionality. It is natural to call them the coefficients of viscosity
of such an anisotropic medium.

Following Braginskil [2], we introduce the tensors
Wo™ = 3, U0 — 1/38™) (0"6"— /3 8") e (b=B/B)
IVlrm — (6_L7‘p.6l1nv + 1/2 Glr‘mbp.bV) e},Lv (G-Lr)n — 6,-171_ brbm)
Wo'™ = (8,0"0" 4- 8 "b"b") M (1.2)
W3rm — 1/2 (6.L7‘p.8mYV _!_ 6_LmverYPv) b'Yep«\l
W4rm — (brbuemyv + bmbveryp) b‘\(epw
Here B 1s the magnetic induction vector and er*Y is the permutation
tensor. In addition,
Wol-m + erm + W2rm — erm, Wkrm n,-m — O for k#n (1.3)

Then, solving Equations (2.1) and (2.6) of [10], and summing cver all
components, we will have, for the viscous stress tensor in an arbitrary
Cartesian coordinate system, the expression

nrm —_ 7](.0) Worm . n(l)erm__ n(z)Wzrm _*_ n(3)W3rm + n(4)W74rm (14)

The flve coefficlents of viscosity can be expressed in terms of the par-
tial coefficients of viscosity of the electrons, ions, and neutral particles

A= 3 (k=0,1,2, 3, 4) (1.5)

a=e,{,a
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The latter have the following form:

1) Coefficients of viscosity of electrons

) 0)
e =N, MM (@) = e (20e) = o
8V e (1.6)
4/ 3 ‘oetene(o) .
Ne® (0e) = N (20e) = — T+ 022
2) Coefficients of viscosity of ilons
1 o) (2) e
I ~ . . 1
ni(") = (1 T QATqTig ) 9711, i ((D) = M (2(1)«;) - WZ
t.7)

-l/s u),‘t.e'f].(n)
WO (@) = 0 (20) = [ ere
171

3) Coefficients of viscosity of neutral particles

0} i 16 202
B} 10 + 19/ 0272
N =1+ enti)8ne, M (@) = na® (20) = 2 T,
T

4/:«x miriﬂ
1.® (0)) = M (20i) = W(na“’) — M) (1.8)
07 =1 — ®UT' T, N = /3nakT (@=e i, 0)

Here, % 1s Boltzmann's constant, and the other notation is the same as
in [10]. (*)

We shall represent the viscous stress tensor by means of one-fluld para-
meters. We shall express the partlcle number densities ng appearing in
and TaB by the mass density of the gas p and 1ts degree of

Nar Taq ?
ionization g . )
@ n, - u
o 1 i (3
Using the condition n = 9, n,, for the number density of the mixture,
we have z
_Zs 4= 1+ Zs 1-- Zs
ne = Zn; = 1+ Zs M, Ma =7 + Zs n, n= Zsm, +m; " " omy e (1.9)
Thus, we find
Zs 1—s ;
ne = Zn; = ™, 0, ng = - e P (1.10)

accurate up to terms of order m,/m,.

It is not difficult to see that there are three characteristic directions
of momentum transport along which the gas viscosity is different. The first
transport, along the magnetic field, of the component of momentum in the

*#) 1In [10] there is an error in the expressions for 1a_1 and (cl*)“ . In
the 1tems 0.4 ra;l'the factor A4, 1is missing. -
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direction of the field. It is characterized by the coefficient n® (7, s, p),
which is equal to the viscosity of the partially lonized gas in the absence
of .a magnetic fleld. In the other two directlons, characterized by the
coefficients N (T, s, 0, B) = n®@ (T, s, p, 2B) anda N® (T, s, p, B) =

= W (T, s, p, 2B), the viscosity of the partially ionized plasma is strongly
reduced in the presence of the field.

Let us now examine the viscous stress tensor for the particular cases of
a weakly ionized and fully lonized gas. Putting s - O in (1.5), we find,
after simple calculations,

(M), +O(s) for k=01, 2 kT
,,m:{ T (lna =0 =

—_ A1
0 (s) for k=3, 4 80,2 (2)) (1.11)

This coincides with the coefticient of viscosity of a simple gas according
to Chapman-Cowling [12]. From this it follows that, for a weakly ionized
gas, within the assumptlons that have been made, the hydrodynamic viscous
stress tensor can be used.

Before proceeding to the case of fully ionlzed gas, we note that, for
arbitrary s, w,T, and w, 7,6 , the contributlon of the electrons may be
omitted from the viscous strain tensor with accuracy up to quantities of
order /m./7m, . This follows from an estimate of the ratlos me® / n;(®
(x =0, 2, 2, 3, 4). Thus, instead of (1.5), it is sufficient to take

Nk =" 3 n® (k=0,1,2,3,4) (1.12)

a=t, a

From this M%) = 1;®) for g = 1 (see (2 and 7). Then, putting s =1
in (1.7) and writing (1.4) in the speclal coordinate system with z-axis
parallel to b , we obtain expressions which coincide with those given in
[7 and 8] (up to numerical factors of the coefficients). The difference is
due to different methods of soclutlon of Boltzmann's equation [2 and 10], in
particular, Grad's "13-moment" approximation in the second reference, and,
in the first reference, development of the correction to Maxwell's function
in a serles of Sonin polynomials, taken up to two terms.

2. Heat flux vector. As may.be seen from Equations (1.13), (3.3) and
(3.8) of [10], in order to write down the heat flux vector of a partlally
lonized gas 1n the one-fluid approximation, 1t 1s necessary to have expres-
sions for the diffusion velocitles w(1 which make up its components. Using

condition XmynsW, — 0 and the expression for the conduction flux
i = Inge,We = — n.e (We — 'W;), we have with accuracy to terms of order m,/ m;
) aCa e ' e i
n. m
i e
“'e___ZespJ+(1_S)Vi’ wi:———epj—%—(1——s)Vi
m
e .
VT e ——— ] —- SV~ 2.1
Wa p } i ( )

The ion "slip" veloclty V,=w, —W, is gilven by Expression (4.8) in [10],
which we rewrite, using the one-fluld parameters and taking onto account the
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viscous term,

myo. .
Vi - SZesp [J + (1 - S) WeTeq (J X b)] -
2.2
2, 1zt Zs(1 — s) 0 ) (2.2)
Tp—[(ﬂrzs)“”7 s+ T52zs VP— S ivn + div n,-] —
1-+Zs h, 1 " h, h, _ me"e;l _ m, 1,
S [ECEGZ_-J‘__Z_Cia(T—i—S):I (e-—Zme;l z m; <l

Here p 1is the pressure, h(1 is the heat flux vector corresponding to
the a-component [10].

Then, neglecting the influence of viscosity on the heat flux, using the
assumptions that have already been made, and taking into account the obser-
vations made in [10] concerning the terms in (2.2), we can obtain from (1.13),
(3.4) and (3.5) of paper [10] the following general expression for the heat
flux vector:

q= — ATl — A Vb (yT-b) — AL (T xb) —
— (WP + A7) vp — A b (yp-b) — AL (gpxb) —
— (M 424 vs — ATb (Ts-b) — A (ysx b) —
— N AD TN (G — AL+ AL (Gx b (2.3)
The relative heat flow h 1is characterized by the coefficlents of heat
conductivity
5
h=q— 5 2 nkTw,
2 eta 2.4)
kk(Tvsyp’B): Z )‘ak(k:T’TllaTJ_;pvav PJ_; S,S”,SJ_; j”l!’j_L)

a=e, ‘i, 4
Here, the partial coefficiente of heat conductivity of the electrons, ions
and neutral particles have the following form:

1) Coefficlents of heat conductivity of electrons

T T
AT = he/ 11+ (@], e T = (@T*)E AT, Ao T= — @eTe*he
T
AP = — AT, AT = — b T AL = b, b, at = — el
A.es I - Ce)\eT I ) xesl = — Ce)\eT'Lq )\e:i = — lde — ((")e":e*)‘2 de'] }“CT (25)
. T 3 , T
Ml =— (do+ )N, At = — (de +de)he *
mhere ) Meal—9) _ @H0T
¢ k(14 Zs)yp €T Z(1+2Zs)s
mgmy Lo Cea ;MM —s 26
de = Zpsek (1::: Toq )’ d' = Zpsek T * Cea® (2.6)
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2) Coefficients of heat conductivity of lons

T a0\, T T T, T
A= m{frﬁ—), ’ A = ((1)1‘[,-"13)2 N, A = ‘Di"i*ﬁki
p _bip ey BTy P BT s GT
A= = N, N = u N, M= 2 Mo, N = o M @.7)
. T . 3T
Ms I = —ﬁ— )\1,T ! [} )\:J_ == “c'l' )\‘i _L’ )‘i] = [d" - (0)31:1"&)2 di ] Al—-
ai ai ai
T T
j + }\4 I i 3 ! }\' L
MU= —(di +d) B, Mt = —(di+d) 2
a; a;
where
Br,* 1 m;8i.Zs
a; = 1 -+ Tig ’ b‘i = (ai ;’) 2k FZs)p
. 1 g'la. (Z + 1) T _ 1 meh; ;ia
Ci== (ai — ?) 20 —5 (1 +Zs) di = (a‘ o ’s’) 2ek (T — $) pTyg (2.8)
. 1y i 1 Borytr,
di = (ai - ?) ZZekpri'ﬁ ) '& = 1 _-— _"_‘Tairia

3) Coefficients of heat conductivity of neutral particles
a0k,

T T
M = Temeay e ke | = (@m0 (T —Rd)
T
Ao 4 AL (kaT _ Aa)
by (" — b 5
}\,GD: s (Ag o) a’'a — A'a.p" _ —1)\:'" (29)
fa 2, — 57177y a,
o L= e Mo L, A =2 (g —Ha) Cohg Al = o T
e, 4 4 a, aa__s—llg,ri.ra;l ’ a z, a
' A — A dh
7»8_1_2__0_“},7.!., A’]="—'d—"(l)"t'“ﬂ‘2d' a a aha
a a, a a [ a ( il ) a ] 2, a, — S-Jﬁrit.rm_—l
T T I
. WL . N ot d
i ’ 3 , omtthdy
Al = (A B, R = = et d) S —
Here
4 —1 Bv;* A m,LoZs
- S, be=(ta— — | gz
Qg 9 + Tai ! a (aa s Ty ) 2k(1 4+ Zs)p
By \ lWw@+DT
e (a“ - *T> TA— (T Zs) (2.10)

Srt N mgnlyg p Br* mi iy
dy ={aqg — d =|a, —
@ a 5T, J2ek(1—s)pTy, " ¢ i sty | 2Zpekv*®
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The remaining notation in (2.5}, (2.7) and (2.9) is the same as in [10];
in the expressions

by == %y kg tn kTT,* u t,* (a=e, i, a)
ny should be replaced by p , using Equation (1.10).

The coefficients of heat conductivity A % (kK = p, s, J, J;), which charac-
terize the difference q — h = 5/22 nkTw;. have the form

Ay = bghy, hy' == cghg, xgj = dghy, x;l = — oidg'Aq (2.11)
where 7
ok . 2m Z32s?
he = g T (L= ) T 0= wazge
o sT L mv .t . 2m%s
“ 2EEY gy T @A W T e G

Putting B = 0 in (2.5), we obtain, for a partially ionized gas,

g=—ANVIT — QA" A Vp— (R +2)Vs— N +1))j (2.13)
where, in addition to the ordinary heat conduction in the direction of VT
{nonionized gas), there appear diffusive heat flows in the directions Vp, Vs
and J; the term (AJ - A,gj)j corresponds to the Thomson effect. Comparing
(2.3) and (2.13), we see that application of a magnetic field to a partially
ionized gas leads to the appearance of additional heat fluxes In directions
parallel and transverse to the magnetic field, with the terms AT (VT xb)
and (ML 4 A}L) (j>7b) corresponding to the Righi-Leduc and Ettinghausen
effects. Making use of the formula == b (k-b) 4 bX(kXb}), where
k == VT, Vp, Vs, j, we distinguish three characteristic, mutually perpendi-
cular directions of heat transfer, in which the coefficients of heat conduc-
tivity are different. Since the magnetic field does not affect the mean
free path of particles along the fleld, then the coefficlieat of heat conduc-
tivity in that direction is the same as without field

k A 3 . .
AL AT = A e k=T, p, s, )

On the other hand, the distances traversed without collision by charged
particles in a plasma in the transverse direction of t{xe magnetic fleld, are
decreased, and therefore so are the coefficlents A* and arl, characteriz-
ing these directions. It 1is easy to verify that in the isotropic case, when
0 Te* <€ 1 and w;1*® <€ 1 (1.e. mean free path 1s equal in all directions),
the heat flux vector reduces to the form (2.13).

It should be noted that in the expression for the coefficlients of the
relative heat flux h , which are connected with the diffusive thermoeffect,
the factors C.a, Cius C.: appear. In [10] 1t 1s shown that ¢,. and (.
are x 0.2 for real potentials of interaction between molecules and vanilsh
for "Maxwellian" molecules. Therefore, the contribution from the correspon-
ding terms to the heat flux is not large: A somewhat larger contribution 1is
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made by the electrons, since the factor [, — —0.6 occurs in A‘ej, )\,ej!l and

AL .

We will now evaluate the role of the electrons and lons in the heat flux.
Forming the ratio A /AF (k= T, T, Ty; p, py, PLi S 84y S5 15 Tus J1)
and neglecting quantities of order Vm we can show that, unlike the
viscous stress tensor, the heat flux vector in the general case 1s determined
by both the lons and electrons, However, thelr relative importance 1s deter-
mined by the strength of the magnetic field and the direction of heat flux.
Really:

1) if W Te* < 0 (1)
A <1 for k=T, T\, Ty Py Pyi sy S By T 9 14
'5:}’“‘{0(1) for k=p, s (2.14)

i
2) 1r  OcT* = O ((mi/ me)")
AK {<1 for k=T, T;; py;sy;iy

O() for k=T;p;;s;;0i; (2.15)
>1 for k=p, s
3) i @eTe* > 1 and 0it*0 > O (1)
hf <1 for k=T, '
—F ™ o) for k—’:T_L, Py 50 Iy (216)
e |>1 for k=T, p,p), s s; 00,

e

Finally, let us consider the heat flux vector for the particular cases of
weakly lonized and fully lonized gases. Putting & ~ 0 in (2.5), (2.7),
{2.9) and (2.11), after some simple calculations we obtain

(Aalimg+0(s) for k=T

N BT 5 3k
MW= J OO for k=T, T,,p,py,p, ([ a0 = om0 ~ 2 2m, "“)
| ]+ 06) for ks, 50,5, /s iys i,
(m,zi,a,g = o L 247

This colncides with the coefficlent of heat conductivity of a simple gas
according to Chapman-Cowling [12].

Putting g = O in (2.5}, {2.7) and (2.11) and writing (2.3) in the spe-
clal coordinate system with g-axis parallel to the vector b , we find for
the heat flux vector of a fully lonlzed gas an expression which 1s the same
(up to numerical factors) as that given in [7 and 8].

3. System of equations of anisotropic magnetogasdynamics., The equations
of conservation of mass, momentum and energy in the one-fluid approximation,
within the restrictions set by our assumpclons, have the form

op . _
¥ 13 4+ divpu =0 (3.1)
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du . . d a .
P =—Vp—diva+ixB (2 -2iwn) (2
3 d 5 . . ou” .
—z—d—‘:’ 5 pdlvu:—dlvq———n”"ﬁ%—‘](E-i-UXB) (3.3)

Here E 1s the electrlc fleld intensity vector; in place of =nf* and Q
the expressions (1.4) and (2.3) should be substituted. The equation of state
is given by klnetlc theory in the form p = nkT . Taking into account the
relation (1.10) between the number density n and mass density of gas, we
have

p="EZ0RT = (1 +Zs)pR' T (’R' _ i) (3.4)
We Mg
Here u, = u, 1s the "molecular weight" of the neutral (or lon) gas, &
is the gas constant per gram-molecule. Using (3.4), (3.1), and the specific
heat at constant volume of the a-gas, Cy, = 3/2(k1n1a), as determined in [12],

the energy equation (3.3) may be put in the form

dT d
(A + Zs) cop <5 + ZeopT o =

% | j(E+ uxB) (3.5)

=—pdivu —divq — " &

Introducing the heat energy per unit mass of the g-component of the mix-
ture, g, = cva]x we obtain

d ou” .
(U +Z90p & + Z peas = — pdivu—divg— 7" 5~ + J (B + uxB) (3.6)

The local degree of ionization s(x, y, z, t)} appearing in (1.%), (2.3},
(3.3) and (3.4) may be found from the continuity equation for the g-compo-
nent of the partially ionized gas

T 1 div (naWa + na) =0 3.7)

Taking into account (1.10), (2.1) and (3.1), we obtain
m
o2 T Vs + dives(l — ) Vi =0 (3.8)
Here, the ion "slip" velocity V, is given by Expression (2.2).

To the system of equations written above, it 1s necessary to add the
equations of electrodynamics,
B . degogE oB . co
rOL—p.;_J TRl rot,Ez—--—at, divB =0, diveg E =p, (3.9)
as well as the generalized Ohm's law, which, wlth an accuracy up to quanti-
ties of order J/m,/m, 1s given by Equation (4.10) in [10]. It is also
necessary to take into account the influence of viscous momentum transfer

on the diffusion of charged particles.

Using one-fluld parameters, we have
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0j -+ o'l b (j-b) -+ 0L (jxb) =
=0y [E 4+ uxB + 6"VT + ¢TI b (VT-b) + "L (VT xb) +0"Vp +
+-6PL (Vpxb) +0°Vs + 0" L (VsXxb) 4+ o"L (s diva — div m) X b] (3.-0)

where

nee%'u Ze? . Ao X
== = — R —— _ 2
% m, mgm; PTos o t 1+ (Yo, %) + 8 (@eTy)
i Ay (Y@ ,T0)? : AgT®,To
o E— 2 e il — _ T
y 8o (weTy) T (o) g @eTy T 7 T togo® (3.11)
arkje T T T r
o = — f—— o I = (yweTy)? o, 6 L= — y0,7,0
14 (10,7, ’ (YweTo) TWTy
my m;p
P — -———-————‘ P_L —_ — P 3 == ~——-—--—l————
? e(l1+2Zs)p ° ° 8o %0 O ez
L= Z+1 6u(ﬂe‘ro 53 5L = miéomero
- Z 1—s " T Ze(1—%)sp

The other notatlon 1s the same as in ([10].

Thus, we have obtalned a closed system of 17 equations (3.1)to (3.%),and
(3.8) to (3.10), with 17 unknowns u, B, E, j, p,p, s, T and p,, to describe
the dynamics of a partially lonized gas in a magnetic field.
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